- 1. In a chemical reaction, the difference between the potential energy of the products and the potential energy of the reactants is the
 - (1) heat of reaction
- (3) free energy
- (2) heat of fusion
- (4) activation energy
- 2. The free energy change (ΔG) that occurs during a chemical reaction is equal to
 - (1) $\Delta H T \Delta S$
- (3) $\Delta S T \Delta H$
- (2) $\Delta H + T \Delta S$
- (4) $\Delta S + T \Delta H$
- 3. As the reactants are converted to product in the reaction $A(g) + B(g) \rightarrow C(s)$, the entropy of the system
 - (1) decreases
- (3) remains the same
- (2) increases
- 4. Given the reaction:

 $A(g) + B(g) \rightarrow AB(g)$ with $\Delta H_f^{\circ} = -10$ kilocalories per mole and $\Delta G_f^{\circ} = +2$ kilocalories per mole. This reaction is

- (1) endothermic and will occur spontaneously
- (2) endothermic and will not occur spontaneously
- (3) exothermic and will occur spontaneously
- (4) exothermic and will not occur spontaneously
- 5. Given the equation:

 $2CO(g) + O_2(g) \rightarrow 2CO_2(g) + 566 \text{ kJ}$ What is the heat of reaction, in kilojoules per mole, of the $CO_2(g)$ formed?

(1) +566

(3) -566

(2) +283

- (4) -283
- 6. According to the potential energy diagram below, what is the reaction $A + B \rightarrow C$?

- (1) endothermic and ΔH is positive
- (2) endothermic and ΔH is negative
- (3) exothermic and ΔH is positive
- (4) exothermic and ΔH is negative

7. The diagram below represents the energy changes that occur during the formation of a certain compound under standard conditions.

According to Reference Table I, the compound could be

(1) HI(g)

- (3) $C_2H_6(g)$
- (2) $NH_3(g)$
- (4) $CO_2(g)$
- 8. Activation energy is required to initiate
 - (1) exothermic reactions, only
 - (2) endothermic reactions, only
 - (3); both exothermic and endothermic reactions
 - (4) neither exothermic nor endothermic reactions
- 9. Given the reaction:

$$A + B \leftrightarrow C + D + \text{heat}$$

Which statement best describes this reaction?

- (1) The forward reaction is exothermic, and the reverse reaction is always exothermic.
- (2) The forward reaction is exothermic, and the reverse reaction is always endothermic.
- (3) The forward reaction is exothermic, and the reverse reaction can be either exothermic or endothermic.
- (4) The forward reaction is endothermic, and the reverse reaction can be either endothermic or exothermic.
- 10. Which reaction results in an increase in entropy?
 - (1) $H_2O(\ell) \rightarrow H_2O(s)$
 - (2) $CO_2(g) \rightarrow CO_2(s)$
 - (3) $NaCl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + NaNO_3(aq)$
 - (4) $Ca(s) + 2H_2O(\ell) \rightarrow Ca(OH)_2(aq) + H_2(g)$

11. Above 0°C, ice changes spontaneously to water according to the following equation:

$$H_2O(s)$$
 + heat $\rightarrow H_2O(\ell)$.

The changes in H₂O(s) involve

- (1) a release of heat and an increase in entropy
- (2) an absorption of heat and an increase in entropy
- (3) a release of heat and a decrease in entropy
- (4) an absorption of heat and a decrease in entropy
- 12. The graph below is a potential energy diagram of a compound which is formed from its elements.

Which interval represents the heat of reaction?

(1) A

(3) C

(2) B

- (4) D
- 13. According to Reference Table I, what is the heat of reaction for the formation of two moles of H₂O(*t*) from hydrogen and oxygen gas at 1 atmosphere and 298 K?
 - (1) -571.6 kJ
- (3) -55.8 kJ
- (2) -483.6 kJ
- (4) + 571.6 kJ
- 14. Which statement describes characteristics of an endothermic reaction?
 - The sign of ΔH is positive, and the products have more potential energy than the reactants.
 - (2) The sign of ΔH is positive, and the products have less potential energy than the reactants.
 - (3) The sign of ΔH is negative, and the products have more potential energy than the reactants.
 - (4) The sign of ΔH is negative, and the products have less potential energy than the reactants.

15. Given the potential energy diagram:

With reference to energy, the reaction $A + B \rightarrow AB$ can best be described as

- (1) exothermic, having a $+\Delta H$
- (2) exothermic, having a $-\Delta H$
- (3) endothermic, having a $+\Delta H$
- (4) endothermic, having a $-\Delta H$
- 16. When NH₄NO₃ is dissolved in water, the temperature of the water decreases. When NaOH is dissolved in a separate water sample, the temperature of the water increases. Based on these observations, it can be concluded that the dissolving of
 - (1) NH₄NO₃ is exothermic and the dissolving of NaOH is endothermic
 - (2) NH₄NO₃ is endothermic and the dissolving of NaOH is exothermic
 - (3) both salts is exothermic
 - (4) both salts is endothermic
- 17. Given the reaction:

$$N_2(g) + O_2(g) + 182.6 \text{ kJ} \rightarrow 2\text{NO}(g)$$

What is the heat of formation of nitrogen (II) oxide in kJ/mole?

- (1) $\Delta H = 91.3$
- (3) $\Delta H = -182.6$
- (2) $\Delta H = 182.6$
- (4) $\Delta H = -91.3$

18. Which potential energy diagram indicates a reaction that must occur spontaneously?

19. Given the reaction:

$$Fe + S \rightarrow FeS + energy$$

Which statement about this reaction is true?

- (1) The potential energy of the reactants is the same as the potential energy of the product.
- (2) The potential energy of the reactants is lower than the potential energy of the product.
- (3) It is exothermic.
- (4) It is endothermic.
- 20. Which chemical reaction will always be spontaneous?
 - (1) an exothermic reaction in which entropy increases
 - (2) an exothermic reaction in which entropy decreases
 - (3) an endothermic reaction in which entropy increases
 - (4) an endothermic reaction in which entropy decreases
- 21. Which type of reaction is the Haber process, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) + heat?$
 - (1) endothermic, with an increase in entropy
 - (2) endothermic, with a decrease in entropy
 - (3) exothermic, with an increase in entropy
 - (4) exothermic, with a decrease in entropy
- 22. Which condition is necessary for a chemical reaction to occur spontaneously?
 - (1) ΔG must be positive.
- (3) ΔS must be positive.
- (2) ΔG must be negative.
- (4) ΔS must be negative.
- 23. The reaction

 $A(g) + B(g) \rightarrow C(g) + D(g) + 30 \text{ kJ}$ has a forward activation energy of 20 kJ. What is the activation energy for the reverse reaction?

(1) 10 kJ

(3) 30 kJ

(2) 20 kJ

(4) 50 kJ

- 24. A 1 gram sample of a substance has the greatest entropy when it is in the
 - (1) crystalline state
- (3) solid state
- (2) gaseous state
- (4) liquid state
- 25. Base your answer on the potential energy diagram of a chemical reaction shown below.

Which arrow represents the activation energy for the forward reaction?

(1) A

(3) C

(2) B

- (4) D
- 26. The graph below represents a chemical reaction.

This reaction is best described as

- (1) endothermic, because energy is released
- (2) endothermic, because energy is absorbed
- (3) exothermic, because energy is released
- (4) exothermic, because energy is absorbed
- 27. As NaCl(s) dissolves according to the equation NaCl(s) \rightarrow Na⁺(aq) + Cl⁻(aq), the entropy of the system
 - (1) decreases
- (3) remains the same
- (2) increases

28. In the diagram below, which letter represents the activation energy for the reverse reaction?

(1) A

(3) C

(2) B

- (4) D
- 29. In what type of reaction do the products of the reaction always possess more potential energy than the reactants?
 - (1) spontaneous
- (3) endothermic

(2) redox

- (4) exothermic
- 30. Based on Reference Table I, which reaction is endothermic?
 - (1) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(\ell)$
 - (2) $CO(g) + O_2(g) \rightarrow CO_2(g)$
 - (3) $NH_4Cl(s) \rightarrow NH_4^+(aq) + Cl^-(aq)$
 - (4) NaOH(s) \rightarrow Na⁺(aq) + OH⁻(aq)